22 de Mayo de 2013

Erratas en la 1^a edición de 'VARIABLE COMPLEJA: RESOLUCIÓN DE PROBLEMAS Y APLICACIONES' (Juan Carlos Angulo), Ediciones Paraninfo S.A.

Localización	Descripción	Donde pone	debe poner
Pág. VII, 1ª linea	Título del capítulo 4	Teorema de Cauchy	Series en el
	en el índice.	y aplicaciones.	campo complejo.
Pág. 33, Prob. 1.4.1	Punto del paralelo.	(R/2, 3R/2)	$(R/\sqrt{2}, [\sqrt{2}-1]R/\sqrt{2})$
	Ecuación de recta.	y = 2R - x	$y = 2R - (\sqrt{2} + 1)x$
	Intersección recta-plano.	x = 2R	$x = 2R/(\sqrt{2} + 1)$
	Radio de circunferencia.	radio $2R$	radio $2R/(\sqrt{2}+1)$
Dám 70 Es 2.06	Decreales an una de non una m	$\partial \phi$	$\partial \hat{\phi}$
Pág. 70, Ec. 2.96	Reemplazar una ϕ por una r .	$\overline{\partial \phi}$	$\overline{\partial r}$
Pág. 71, Ec. 2.100	Reemplazar una ϕ por una r .	$\frac{\partial \phi}{\partial x}$	$rac{\partial \phi}{\partial r}$
Pág. 74, Ec. 2.116	Cerrar paréntesis.	$\frac{\partial \phi}{2y(y^2 - 3x^2)}$	$\frac{\partial r}{2y(y^2 - 3x^2)}$
Pág. 94, Prob. 2.4.1	Suprimir 'con $\alpha \in \mathbb{C}$ ' en el	29(9 52	$2g(g-6x^{-})$
1 ag. 51, 1105. 2.1.1	enunciado del problema.	$w = e^{iz}$, con $\alpha \in \mathbb{C}$.	$w = e^{iz}$.
Pág. 131, Ec. 3.112	Elevar al cuadrado una ρ .	$\frac{2\rho e^{i\theta} + \rho e^{2i\theta}}{2\rho e^{i\theta} + \rho e^{2i\theta}}$	$2\rho e^{i\theta} + \rho^2 e^{2i\theta}$
Pág. 141, Ec. 3.142	Segundo límite.		$\lim_{z \to c} P(z_{z-}) = 0$
		$\lim_{n_j \to \infty} z_{n_j} = \infty.$	$\lim_{n_j \to \infty} P(z_{n_j}) = 0.$
Pág. 170, Ec. 4.79	Falta el coeficiente c_3 .	$2 \cdot 3(z-a) + \dots$	$2 \cdot 3 \cdot c_3(z-a) + \dots$
Pág. 188, Prob. 4.5.1(a)	Añadir un paréntesis.	(n+3)!	(n+3)!
Pág. 188, Prob. 4.5.1(a)	Reemplazar e^z por e^2 en toda	7.	2
D' 100 D 1 471()	la ecuación (cuatro veces).	e^z	e^2
Pág. 188, Prob. 4.5.1(a)	Quitar un paréntesis en el	$e^{(2(z-1)}$	$e^{2(z-1)}$
D' 100 PIRMPIO	segundo término.		$\frac{e^{2(x-1)}}{\lim e^n = \infty.}$
Pág. 198, EJEMPLO	Límite ∞ en vez de 0.	$\lim_{n \to \infty} e^n = 0.$	$n \rightarrow \infty$
Pág. 209, Ec. 5.18	Falta un factor $\frac{1}{2\pi i}$.	$\oint_C \frac{g(z)}{(z-z_0)^m} dz$ $(z-1)^m$	$\frac{1}{2\pi i} \oint_C \frac{g(z)}{(z-z_0)^m} dz$
Pág. 209, EJEMPLO 1	Notación en el enunciado.	$(z-1)^m$	$(z-1)^n$
Pág. 217, Ec. 5.45	Reemplazar $2iab$ por $2iaz$.	$bz^2 + 2\imath ab - b$	$bz^2 + 2iaz - b$
Pág. 221, Ec. 5.67	Añadir '-', corregir '>'.	$2\pi i \sum_{\mathrm{Im}(z_k) > 0}$	$-2\pi i \sum_{\text{Im}(z_k) < 0}$
Pág. 226, Fig. 5.7	Cambiar orientación en	Las flechas del	Cambiando su sentido,
1 ag. 220, 11g. 0	parte del circuito.	círculo interior no	el circuito completo
	Factor and the factor	están bien orientadas.	tiene dirección correcta
			de recorrido.
Pág. 242, Ec. 5.154	Añadir un símbolo π .	$I = \frac{\pi}{I}$	$I = \frac{\pi}{I}$
		$m \operatorname{sen} \frac{\kappa}{m}$	$m \operatorname{sen} \frac{\pi \kappa}{m}$
Pág. 243, Sol. 5.2.5(a)	Reemplazar x por z .	$son x = -e^{\pm i\alpha}$	$son z = -e^{\frac{\pi q}{2i\alpha}}$
Pág. 243, Ec. 5.156	Suprimir el primer signo '-'	ila	i la=
	al final de la ecuación.	$-\pi e^{-ik\pi}$	$\pi e^{-ik\pi}$
Pág. 243, linea siguiente		ſ	ſ
a Ec. 5.156	Reemplazar ϵ por ρ .		
Pág. 243, segunda linea		ν 1 ε	ριρ
tras Ec. 5.156	Reemplazar ϵ por ρ .	$\epsilon \to 0$	ho o 0
Pág. 243, Ec. 5.157	Añadir una 'I' al final.	$-e^{-2\pi ik}$	$-e^{-2\pi ik}I$
Pág. 244, Ec. 5.158	Sobra el signo '-' igual que		
,	en la Ec. 5.156.	$-\pi e^{-ik\pi}$	$\pi e^{-ik\pi}$
Pág. 247, Ec. 5.178	Reemplazar ξ^2 por ξ^3 .	$-\frac{1}{\xi^2}\sqrt{(1-\xi a)(1-\xi b)}$	$-\frac{1}{\xi^3}\sqrt{(1-\xi a)(1-\xi b)}$
Pág. 248, Ec. 5.181	Añadir un paréntesis.	$\operatorname{sen}(-\pi/2)$	$\operatorname{sen}(-\pi/2)$
Pág. 286, Ec. 6.60	Reemplazar $f(x)$ por $f'(x)$.	$\mathcal{F}{f(x)}(k)$	$\mathcal{F}\{f'(x)\}(k)$
Pág. 286, Ec. 6.60	Reemplazar $f(x)$ por $f'(x)$.	$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ikx} f(x) dx$	$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ikx} f'(x) dx$
<u> </u>			